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Unsteady MHD Couette Flow with Heat Transfer
in the Presence of Uniform Suction and Injection
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The unsteady Couette flow of an electrically conducting, viscous, incompressible fluid
bounded by two parallel non–conducting porous plates is studied with heat transfer. An
external uniform magnetic field and a uniform suction and injection are applied perpen-
dicular to the plates while the fluid motion is subjected to a constant pressure gradient.
The two plates are kept at different but constant temperatures while the Joule and vis-
cous dissipations are included in the energy equation. The effect of the magnetic field
and the uniform suction and injection on both the velocity and temperature distributions
is examined.
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1. Introduction

The magnetohydrodynamic flow between two parallel plates, known as Hartmann
flow, is a classical problem that has many applications in magnetohydrodynamic
(MHD) power generators, MHD pumps, accelerators, aerodynamic heating, electro-
static precipitation, polymer technology, petroleum industry, purification of crude
oil and fluid droplets and sprays. Hartmann and Lazarus [1] studied the influence
of a transverse uniform magnetic field on the flow of a conducting fluid between
two infinite parallel, stationary, and insulated plates. Then, a lot of research work
concerning the Hartmann flow has been obtained under different physical effects
[2–10].

In the present study, the unsteady Couette flow and heat transfer of an incom-
pressible, viscous, electrically conducting fluid between two infinite non-conducting
horizontal porous plates are studied. The upper plate is moving with a constant
velocity while the lower plate is kept stationary. The fluid is acted upon by a con-
stant pressure gradient, a uniform suction and injection and a uniform magnetic
field perpendicular to the plates. The induced magnetic field is neglected by assum-
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ing a very small magnetic Reynolds number [4, 5]. The two plates are maintained
at two different but constant temperatures. This configuration is a good approxi-
mation of some practical situations such as heat exchangers, flow meters, and pipes
that connect system components. The cooling of these devices can be achieved by
utilizing a porous surface through which a coolant, either a liquid or gas, is forced.
Therefore, the results obtained here are important for the design of the wall and
the cooling arrangements of these devices. The equations of motion are solved an-
alytically using the Laplace transform method while the energy equation is solved
numerically taking the Joule and the viscous dissipations into consideration. The
effect of the magnetic field and the suction and injection on both the velocity and
temperature distributions is studied.

2. Description of the Problem

The two non-conducting plates are located at the y = ±h planes and extend from
x = −∞ to ∞ and z = −∞ to ∞. The lower and upper plates are kept at the
two constant temperatures T1 and T2, respectively, where T2 > T1. The fluid flows
between the two plates under the influence of a constant pressure gradient dP/dx in
thex–direction, and a uniform suction from above and injection from below which
are applied at t = 0. The upper plate is moving with a constant velocity Uo while
the lower plate is kept stationary. The whole system is subjected to a uniform
magnetic field Bo in the positive y–direction. This is the total magnetic field acting
on the fluid since the induced magnetic field is neglected. From the geometry of
the problem, it is evident that ∂/∂x = ∂/∂z = 0 for all quantities apart from the
pressure gradient dP/dx, which is assumed constant. The velocity vector of the
fluid is

v(y, t) = u(y, t)i + voj

with the initial and boundary conditions u = 0 at t ≤ 0, and u = 0 at y = −h, and
u = Uo at y = h for t >0. The temperature T (y, t) at any point in the fluid satisfies
both the initial and boundary conditions T = T1 at t ≤0, T = T2 at y = h, and
T = T1 at y = −h for t >0. The fluid flow is governed by the momentum equation

ρ
∂u

∂t
+ ρvo

∂u

∂y
= −dP

dx
+ µ

∂2u

∂y2
− σB2

ou (1)

where ρ, µ and σ are, respectively, the density, the coefficient of viscosity and the
electrical conductivity of the fluid. To find the temperature distribution inside the
fluid we use the energy equation [11]
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where c and k are, respectively, the specific heat capacity and the thermal conduc-
tivity of the fluid. The second and third terms on the right–hand side represent the
viscous and Joule dissipations, respectively.

The problem is simplified by writing the equations in the non-dimensional form.
We define the following non–dimensional quantities
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x

h
, ŷ =

y

h
, ẑ =
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u
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ρU2
o

, t =
tUo

h
,
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S = vo/Uo – is the suction parameter,
Pr = µc/k – is the Prandtl number,
Ec = U2

o /c(T2 − T1) – is the Eckert number,
Ha2 = σB2

oh2/µ – where Ha is the Hartmann number,
In terms of the above non–dimensional variables and parameters, the basic

eqs. (1)-(2) are written as (the ”hats” will be dropped for convenience)

∂u
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+

1
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u, (3)
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The initial and boundary conditions for the velocity become

t ≤ 0 : u = 0, t > 0 : u = 0, y = −1, u = 1, y = 1 (5)

and the initial and boundary conditions for the temperature are given by

3. Numerical Solution of the Governing Equations

Equations (3) and (4) are solved numerically using finite differences [13] under the
initial and boundary conditions (5) and (6) to determine the velocity and temper-
ature distributions for different values of the parameters Ha and S. The Crank-
Nicolson implicit method is applied. The finite difference equations are written at
the mid–point of the computational cell and the different terms are replaced by
their second–order central difference approximations in the y–direction. The diffu-
sion term is replaced by the average of the central differences at two successive time
levels. Finally, the block tri–diagonal system is solved using Thomas’ algorithm.
All calculations have been carried out for dP/dx = −5, Pr= 1 and Ec = 0.2.

4. Results and Discussion

Figures 1–2 presents the velocity and temperature distributions as functions of y
for different values of the time starting from t = 0 to the steady state. Figures
1 and 2 are evaluated forHa = 1 and S = 1. It is observed that the velocity
component u and temperature T reach the steady state monotonically and that u
reaches the steady state faster than T . This is expected, since u acts as the source
of temperature. Figures 3–4 shows the effect of the Hartmann number Ha on the
time development of the velocity u and temperature T at the centre of the channel
(y = 0). In this figure, S = 0 (suction suppressed). It is clear from Fig. 3 that
increasing the parameter Ha decreases u and its steady state time. This is due to
increasing the magnetic damping force on u. Fig. 4 indicates that increasing Ha
increases T at small time but decreases it at large time. This can be attributed to
the fact that, for small time, u is small and an increase in Ha increases the Joule
dissipation which is proportional to Ha and therefore, the temperature increases.
For large time, increasing Ha decreases u and, in turn, decreases the Joule and
viscous dissipations and, in turn, decreases T . This accounts for crossing the curves
of T with time for various values of Ha.
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Figure 1 Time development of the profil of u, Ha = 1 and S = 1
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Figure 2 Time development of the profil of T , Ha = 1 and S = 1
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Figure 3 Effect of Ha on the time variation of u at y = 0, S = 0
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Figure 4 Effect of Ha on the time variation of T at y = 0, S = 0
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Figure 5 Effect of S on the time variation of u at y = 0, Ha = 0
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Figure 6 Effect of S on the time variation of T at y = 0, Ha = 0



170 Attia, HA

Figures 5–6 shows the effect of the suction parameter on the time development
of the velocity u and temperature T at the centre of the channel (y = 0). In this
figure, Ha = 0 (hydrodynamic case). In Fig. 5, it is observed that increasing the
suction decreases the velocity u at the center and its steady state time due to the
convection of fluid from regions in the lower half to the center, which has higher fluid
speed. In Fig. 6, the temperature at the center is affected more by the convection
term, which pumps the fluid from the cold lower half towards the centre.

t ≤ 0 : T = 0, t > 0 : T = 1, y = 1, T = 0, y = −1. (6)

5. Conclusion

The unsteady Couette flow of a conducting fluid under the influence of an applied
uniform magnetic field has been studied in the presence of uniform suction and
injection. The effect of the magnetic field and the suction and injection velocity
on the velocity and temperature distributions has been investigated. It is found
that both the magnetic field and suction or injection velocity has a marked effect
on both the velocity and temperature distributions. It is of interest to see that the
effect of the magnetic field on the temperature at the center of the channel depends
on time. For small time, increasing the magnetic field increases the temperature,
however, for large time, increasing the magnetic field decreases the temperature.
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